VSS121

APEEM Components Analysis and Evaluation

Principal Investigator:

Paul Chambon

2014 U.S. DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

June 18, 2014

OVERVIEW

Timeline

• Project start date: Oct. 2012

Project end date: Sept 2014

Barriers*

 "Validate, in a systems context, performance targets for deliverables from the Power Electronics and Energy Storage Technology R&D activities"

*from 2011-2015 VTP MYPP

Budget (DOE share)

• FY13 funding:

• VSST: \$300k

• APEEM: \$200k

• FY14 VSST funding: \$200k

Partners

- DOE VTO Advanced Power Electronics and Electric Motors (APEEM)
- Oak Ridge National Laboratory
 - Power Electronics & Electric Machinery Group
- USDRIVE EETT/VSATT

RELEVANCE

Directly supports:

- VSST cross-cutting activities :Modeling and simulation; component & systems evaluations; vehicle systems optimization.
- APEEM testing activities
- Indirectly supports VSST laboratory and field vehicle evaluations.
- Addresses the following VSST Barriers:
 - Risk aversion: Generates experimental measurements to support model-based simulation and analysis.
 - Cost: Utilizes ORNL VSI lab + data and models from other OVT projects.
 - Constant advances in technology: Emphasizes latest advanced high efficiency combustion and power electronics and electric machinery.
- "Validate, in a systems context, performance targets for deliverables from the Power Electronics and Energy Storage Technology R&D activities" *

*Reference: Vehicle Technologies Multi-Year Program Plan 2011-2015:

http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/vt mypp 2011-2015.pdf

OBJECTIVES

- Enhance current benchmarking and prototype evaluation capabilities:
 - Steady state characterization
 - Transient based testing
 - Hardware in the loop testing with a vehicle perspective
- Evaluate current and proposed electric machine and power electronics technology in the context of a vehicle:
 - Quantify benefits of component technology at powertrain and vehicle levels
 - Determine areas/regions for component design improvement based upon vehicle and usage considerations

FY2014 MILESTONES

Month /Year	Milestone or Go/No-Go Decision	Description	Status
Dec 2013	Milestone	Procurement of dynamometer and testcell controller	COMPLETE
March 2014	Milestone	E-storage unit commissioning	COMPLETE
June 2014	Milestone	Test cell commissioning	ON SCHEDULE

APPROACH(1): ORNL VSI Component Test Cell – Enhanced APEEM Benchmarking & Evaluation

- VSI Component Test Cell allows enhanced evaluation of APEEM technologies with transient operation and emulated vehicle characteristics
 - Allows more detailed data collection through ease of complete instrumentation
 - Hardware-in-the-loop provides capture of not only steady state operating points, but transient behavior associated with real-world operation
 - Flexible real-time system allows
 - Any drive cycle, standard or custom, to be exercised
 - Single system (motor plus inverter) can be exposed to matrix of various powertrain architectures/operating envelopes
- AVS modeling and simulation experience leveraged to support analysis of APEEM component design and development
- Transient, HIL based testing should be part of standard evaluation protocol for ALL technologies!

APPROACH(2): ORNL VSI Component Test Cell – Enhanced APEEM Benchmarking & Evaluation

Managed by UT-Battelle for the U.S. Department of Energy

BACKGROUND: ORNL VSI Laboratory comprised of two distinct test cells

The VSI Laboratory houses unique test cell capabilities for full powertrain and component-level evaluation and development. Both test cells include access to:

- An AVL 400 kW energy storage system emulation with flexibility to simulate different energy storage systems as part of "X"-in-the-loop evaluations or when batteries are still in development
- A dSPACE hardware-in-the-loop (HIL) real-time platform for vehicle system emulation

VSI Powertrain Test Cell

- Uniquely capable of analyzing light-duty to full heavy-duty Class 8 powertrains
- Configurations available to evaluate and characterize engines, electric machines, transmissions, and integrated powertrains

VSI Component Test Cell

- Component "X"-in-the-loop environment including engines, electric machines, and energy storage systems
- Light-duty focused with medium-duty powertrain component capability

Test cell specifications:

- An AVL 250 kW, low-inertia dynamometer capable of absorbing 525 N·m of continuous torque and providing 470 N·m of motoring torque
- 12,000 rpm high-speed capability
- Double-ended option to have two independent experimental set-ups simultaneously
- Developed through collaboration of DOE VSST & APEEM

ACCOMPLISHMENT (1): Procurement and Commissioning

Double ended dynamometer

220kW, 525Nm

High speed: 12000rpm

Low Inertia: 0.32kg.m²

Order placed Q2 FY13

Received December 2014

Test cell commissioning

- Bed Plate procured and in place
- Dynamometer and controller in place
- Electrical installation scheduled for May 2014
- Dynamometer commissioning scheduled for June 2014

ACCOMPLISHMENT (2): E-Storage Commissioning

- E-storage unit a.k.a. battery emulator
 - 400kW
 - 800V
 - 600°
- Procured part of VSI powertrain testcell
- Shared with component test cell
- Commissioned in January 2014
- Demonstrated on hybrid powertrain installed in powertrain testcell

ACCOMPLISHMENT (3): E-machine Characterization

- E-storage unit was used in coordination with ORNL VSI Powertrain Test Cell to characterize electric machine
- Hardware in the loop set-up allows to test electric machine part of hybrid powertrain as if it were in a vehicle

COLLABORATION AND COORDINATION

- Oak Ridge National Laboratory Power Electronics & Electric Machinery Group
 - Collaboration on APEEM electric machine benchmarking activities
- VTO Advanced Power Electronics & Electric Motors
 - Funding for procurement and commissioning activities

USDRIVE EE Tech Team - VSATT

- ANL gathers information on system operation at the vehicle level using APRF facility
 - **Coordinates** with APEEM/ORNL to determine if VSATT vehicle testing queue matches EETT component benchmarking needs
 - Characterizes inverter operation (DC in, AC out, efficiency), provides data to ORNL
- ORNL runs benchmark tests
 - Creates standard steady state efficiency maps for inverter, motor, and system
 - Provides transient efficiency results for inverter, motor, and system based upon
 - Matrix of relevant powertrain architectures
 - Standard and/or custom drive cycles

PROPOSED FUTURE WORK

FY2014:

- Complete test cell commissioning
- Characterize electric machine out of Cummins MD & HD Accessory Hybridization CRADA to validate test set up

FY2015:

- Nucleate boiling project in collaboration with ANL:
 - Adapt nucleate boiling technology to motor and inverter cooling system
 - Demonstrate cooling system in realistic real world conditions using hardware in the loop platform
- General support for DOE APEEM program
 - Vehicle level modeling to understand impacts of APEEM technologies at the system level
 - Enhanced benchmarking for OEM and prototype PEEM technologies

SUMMARY:

Relevance

Validate, in a systems context, performance targets for deliverables from the Advanced
 Power Electronics and Electrical Motors R&D activities

Approach

 Procure and commission a test cell suitable to characterize steady state and transient behavior of hybrid electric powertrain components.

Technical accomplishments and Progress

- Completed procurement activities.
- Commissioning activities under way
- Performed preliminary electric machine characterization.

Collaborations:

- ORNL Power Electronic and Electric Machinery group and DOE APEEM
- USDRIVE EE Tech Team

Proposed Future Work

- Support DOE APEEM programs with new test facilities.
- Joint project with ANL to understand application of nucleate boiling to power electronics cooling

ACKOWLEDGEMENTS

Lee Slezak

Lead, Vehicle and Systems Simulation and Testing Office of Vehicle Technologies US Department of Energy

David Anderson

Vehicle and Systems Simulation and Testing Office of Vehicle Technologies US Department of Energy

Contacts

Paul Chambon

Principal Investigator
Electrical & Electronics Systems Research
Center
(865) 946-1428
chambonph@ornl.gov

David Smith

Director
Center for Transportation Analysis (CTA)
Program Manager
Advanced Vehicle Systems
(865) 946-1324
smithde@ornl.gov

